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Abstract 

Monolayer transition metal dichalcogenides (TMDs) show promising potential for next-generation optoelectron-
ics due to excellent light capturing and photodetection capabilities. Photodetectors, as important components of 
sensing, imaging and communication systems, are able to perceive and convert optical signals to electrical signals. 
Herein, the large-area and high-quality lateral monolayer MoS2/WS2 heterojunctions were synthesized via the one-
step liquid-phase chemical vapor deposition approach. Systematic characterization measurements have verified good 
uniformity and sharp interfaces of the channel materials. As a result, the photodetectors enhanced by the photogat-
ing effect can deliver competitive performance, including responsivity of ~ 567.6 A/W and detectivity of ~ 7.17 × 1011 
Jones. In addition, the 1/f noise obtained from the current power spectrum is not conductive to the development of 
photodetectors, which is considered as originating from charge carrier trapping/detrapping. Therefore, this work may 
contribute to efficient optoelectronic devices based on lateral monolayer TMD heterostructures.
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Introduction
Considering the almost half-a-trillion-dollar semicon-
ductor-chip market, two-dimensional (2D) materials 
are currently one of the most feasible and promising 
candidates for extending Moore’s law [1–5]. As a rep-
resentative member of the 2D family, transition metal 
dichalcogenides (TMDs) have been intensively studied 
due to their distinctive optoelectronic properties and 
potential applications [6–12] in photodetection and light-
emitting devices [13, 14]. Notably, the tunable bandgap, 
high carrier mobility, high optical absorption and atomi-
cally thin thickness, making TMDs appropriate channel 
materials for photodetectors, play a crucial role in opto-
electronic or electronic devices [15, 16]. Although crystal 
defects in TMDs giving rise to the carrier trapping effect 

can result in high photosensitivity, they can unavoid-
ably lead to slow response speed yet [17]. In addition, 
some researchers propose the plasmonic enhancement 
to boost the limited light utilization of 2D materials 
[18–20]. Combining respective superiorities and showing 
unique electronic transport at the junction, TMDs heter-
ostructures either lateral stitching or vertical stacking are 
presented [21]. Such heterostructures can tailor intrinsic 
electronic properties and improve the optical absorption 
[22], showing emerging and designable features [13, 23]. 
For example, the built-in electrical field [24] or energy 
level difference [25] induced by TMD heterostructures 
should accelerate photocarrier separation [26], suppress 
photocarrier recombination [17, 27] and lower dark cur-
rent [28] as well, which is beneficial for achieving high-
performance photodetection. Besides, Wang’s group [29] 
has certified suppressed electron–hole (e–h) recombina-
tion in lateral heterostructures. As previously reported, 
the lateral heterostructures showed higher carrier mobil-
ity [30] whereas the vertical heterostructures usually 
increased the photoactive area [27] and/or enhanced cur-
rent drive per area [31]. Moreover, the in-plane interfaces 
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of lateral heterostructures showed stronger emission 
intensity than both sides [14]. However, the suppressed 
photoluminescence (PL) emission could be observed 
in the vertical hetero-interface because of the reduced 
direct radiative recombination [32]. Additionally, both 
lateral and vertical TMDs heterostructures make it pos-
sible to create new excitonic transitions [14].

In terms of crystal lattice quality, MoX2/WX2 (X = S, 
Se or Te) lateral heterojunctions could induce struc-
tural defects scarcely due to their similar honeycomb-
like [33, 34] configuration and lattice parameters [34]. 
In addition, this kind of heterojunction can form type-II 
band alignment generally, which is desirable for high-
efficiency photodetection [32, 34, 35]. According to the 
former work, lateral monolayer MoS2/WS2 heterojunc-
tion preferred to exhibit type-II band alignment with the 
valence band maximum (VBM) localized at WS2 and the 
conduction band minimum (CBM) at MoS2 [32, 34]. For 
instance, Wu’s group have further reported that the VBM 
and CBM of MoS2 are 0.39  eV and 0.35  eV lower than 
that of WS2, respectively [34]. Furthermore, the band 
offset between MoS2 and WS2 determining the band 
alignment could be estimated via their different d-orbital 
positions of Mo and W [34]. Vertical heterostructures 
can be prepared by mechanical transfer and stack, 
whereas lateral ones can be only achieved by growth 
methods [14]. Furthermore, vertical heterostructures, as 
previously reported, cannot be precise control and it is 
easily contaminated at the interfaces between layers [33]. 
Luckily, the lateral heterostructures can be synthesized 
by one-step method to reduce contaminations [28]. Now-
adays the growth of large-area and high-quality lateral 
monolayer TMDs heterostructures has remained a great 
challenge [36]. Hence, high-quality and large-area lateral 
TMDs heterojunctions are significant and desired for the 
development of high-performance photodetectors.

Here, the lateral monolayer MoS2/WS2 heterojunctions 
with sharp interfaces and good uniformity via one-step 
liquid-phase CVD method are prepared and photodetec-
tors are fabricated based on these heterostructures. The 
presented photodetectors can deliver high responsiv-
ity and detectivity of 567.6 A/W and 7.17 × 1011 Jones, 
respectively. This work demonstrates lateral monolayer 
MoS2/WS2 heterojunctions can serve as qualified candi-
dates for next-generation optoelectronic applications.

Methods
Heterostructure Synthesis
0.05  g sodium tungstate, 0.5  g ammonium molybdate 
and 0.12  g NaOH (or KOH) particles were dissolved in 
10 mL of deionized (DI) water to obtain precursor solu-
tion. The growth substrates (sapphire) were treated by 
piranha solution to improve the surface hydrophilicity, 

and then the precursor solution was evenly spin-coated 
onto clean sapphire substrates. After that, the precursor 
covered sapphire and sulfur were placed on the heat-
ing center and upstream of a quartz tube, respectively. 
The heating center was ramped up to 700  °C in 40  min 
and maintained for 10  min to grow MoS2-OH bilay-
ers (i.e. MoS2 monolayer and a single layer of OH− ions 
attached). Finally, the carrier gas was changed from Ar to 
Ar/H2 (5% H2), and the heating center heated to 780  °C 
within 10 min and kept for 10 min to allow WS2 to grow 
along the edges of MoS2–OH bilayers, forming MoS2/
WS2 lateral heterostructures. The more details of the het-
erostructure synthesis refer to previous work [30].

Transfer Process
We used the polystyrene (PS)-assisted method to trans-
fer WS2/MoS2 lateral heterostructures from sapphire to 
SiO2/Si substrates. The PS solution (9  g of PS was dis-
solved in 100  mL of toluene) is first spin-coated on the 
heterostructures with 3500 rpm for 60 s, then the sample 
is baked at 90  °C for 10 min to eliminate toluene. After 
that, the WS2/MoS2–PS film is obtained by a water drop-
let, and the floating WS2/MoS2–PS film is then dredged 
up with a clean SiO2/Si substrate. The WS2/MoS2–PS-
SiO2/Si sample is baked at 80  °C for 1  h and then at 
150  °C for 30  min to spread the polymer to eliminate 
possible wrinkles. Finally, the PS film is removed by rins-
ing with toluene several times to get WS2/MoS2-SiO2/Si 
samples.

Device Fabrication
The standard electron beam lithography (EBL) was used 
to define the markers and electrode patterns on the as-
grown lateral monolayer MoS2/WS2 heterojunctions. 
The Ti/Au electrodes (10  nm/100  nm) were evaporated 
on the channel and lifted off in acetone. The device was 
thermal annealed at 400 °C for 2 h in vacuum and cooled 
down to room temperature rapidly.

Material Characterization
The optical images were captured with OLYMPUS 
microscope (LV100ND). The Raman, PL and AFM map-
ping images were measured with a Raman-AFM confo-
cal spectrometer (Witec, alpha300 RA) with a laser of 
532 nm.

Device Characterization
The optoelectronic properties of the photodetectors 
were measured with the SemiProbe probe station and 
a semiconductor parameter analyzer (Keithley 4200) 
and Platform Design Automation (PDA, FS- Pro). Dif-
ferent wavelength lasers as the light sources were used 
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to measure the photoresponse of the photodetec-
tors. Different laser densities were determined with an 
irradiatometer.

Results and Discussion
Figure 1a shows the optical image of the CVD-grown lat-
eral monolayer heterostructure, illustrated by the opti-
cal contrast. The corresponding Raman spectra obtained 
from the different positions marked 1 and 2 in Fig.  1a 
confirm the configuration of the inner MoS2 (385.5 cm−1 
and 405.3  cm−1) and outer WS2 (351.5  cm−1 and 
416.5 cm−1) in Fig. 1b [30]. High crystal quality of MoS2 
and WS2 are implied because no oxidation peak observed 
in the corresponding Raman spectra [37]. Especially, 
the eigen-peaks of MoS2 and WS2 both were observed 
in the stitched interface marked 3 in Fig.  1a, indicating 
two materials form at the interface. In addition, the fre-
quency difference between the E2g mode and A1g mode 
of MoS2 is 19.8  cm−1, suggesting monolayer one [30, 
38, 39]. When considering WS2, the peak intensity ratio 
of longitudinal acoustic mode (2LA) [40] at 352  cm−1 
to A1g mode, i.e. I2LA/IA1g, is more accurate to verify the 
thickness than frequency difference [14]. The ratio was 
estimated to be ~ 2, in agreement with monolayer WS2 
measured by 532 nm laser [14]. The distinct red shift of 
E2g mode (in-plane vibration) can be observed, resulted 
from alloying effect [41] in the lateral heterojunctions. 
Notably, this similar behavior were also observed in the 

vertical heterojunctions, caused by dielectric screening 
and interlayer coupling [42]. Furthermore, the Raman 
mapping result in Fig.  1c with the blue region of MoS2 
and the red region of WS2 indicates the seamless high-
quality in-plane heterostructure [13, 43]. Figure 1d, e also 
demonstrate the configuration with MoS2 inside and WS2 
outside by PL mapping, respectively [13]. Several points 
showing enhanced PL intensities in WS2 region may be 
explained as carrier inhomogeneity caused by impurities 
or vacancies [14]. In addition, the stronger PL emissions 
at the interface than the MoS2 region could be inter-
preted as the inhomogeneous distribution of carriers or 
higher photoinduced carrier recombination rate at the 
edges [14]. Both Raman and PL mapping suggest a sharp 
and well-stitched interface between MoS2 and WS2 [14, 
44]. The thickness and surface morphology were meas-
ured by atomic force microscope (AFM) with trapping-
mode. Note that few grain boundaries resulting in charge 
carrier scatting [45] are observed in material inside but 
edges indicating better electrical transport performance 
as shown in Fig. 1f [14, 46]. The thickness of WS2 outside 
is ~ 0.7  nm (bottom) consistent with CVD-grown WS2 
monolayer reported previously [47], and the height dif-
ference between WS2 and MoS2 is about 0.25 nm (top), 
implying monolayered MoS2 [47]. Overall, the above 
material characterization results can demonstrate the lat-
eral monolayer MoS2/WS2 heterojunction with the sharp 
interface.

Fig. 1  Material characterization results of the as-grown lateral monolayer MoS2/WS2 heterostructure. (a) The optical image of the lateral monolayer 
MoS2/WS2 heterojunction. (b) The Raman spectrum obtained from the site marked with 1, 2 and 3 in (a), respectively. The Raman mapping image 
(c), PL mapping images of MoS2 region (d) and WS2 region (e) from the red framed area in (a). The corresponding false-color bar is inserted at the 
bottom of (c)–(e). (f) The corresponding cross-sectional height profile of the blue (between WS2 and MoS2) and white (between WS2 and substrate) 
lines marked in AFM morphology image
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Photodetectors were fabricated using an EBL system 
based on the lateral MoS2/WS2 heterojunction. Fig-
ure 2a exhibits the schematic diagram (top) of the lateral 
heterojunction device and corresponding type-II band 
alignment (bottom). Accordingly, electrons and holes 
are transferred and confined in MoS2 and WS2 region 
through the interface, respectively, achieving the photo-
electric conversion [13, 21, 24, 48]. We attribute this to 
the photogating effect, such as a special case of photo-
conductive effect [49]. The photogating effect can work 
as a local photogate modulating channel conductance 
[50]. The optical image of the device with the effective 
device area of ~ 40 μm2 is described in Fig. 2b with E1 and 
E2 electrodes as the source and drain electrodes. In order 
to figure out the heterojunction configuration, combined 
Raman mapping was carried out (Fig. 2c), indicating the 
channel materials of lateral MoS2/WS2 heterojunction 
between the measured source and drain electrodes (E1 
and E2) [28]. The blue, red and dark sections are MoS2, 
WS2 and metal electrodes, respectively. Figure 2d shows 
the semi-logarithmic output characteristic curves of the 
lateral heterojunction under visible light with 405  nm, 
520  nm and 635  nm, respectively. The inset in Fig.  2d 
reveals a linear I-V relationship between the channel and 
the electrodes [51–56]. The linear I–V character is con-
ducive to achieving high responsivity but poor sensitiv-
ity of photodetectors due to a high dark current [57]. 
Additionally, the Iph (i.e. Ilight – Idark) of the photodetector 
increases to 12.5 times of that before thermal annealing, 

which maybe ascribe to decreased contact resistance 
[46, 58], removal of defects [59] and improved electrical 
conductivities [60]. Figure  2e depicts the photoswitch-
ing characteristics excited by the above wavelengths. The 
transient current rises rapidly when the light is on and 
drops as soon as the light is off, implying this photodetec-
tor can serve as a prompt light-activated switch [61].

The semi-logarithmic output characteristics with the 
same wavelength but varied laser power densities are 
depicted in Fig. 3a. As expected, photocurrent is enlarged 
as the laser power densities increase due to more induced 
photogenerated carriers [62]. Figure  3b shows the I–V 
curves with the same laser power density but differ-
ent incident wavelengths (i.e. different light absorption 
amount and optical excitation energy). Although the 
shorter wavelength possesses fewer photons compared 
to the longer wavelength at the same laser power density. 
In this instance, the measured transient current increases 
with the decreases of the irradiation wavelength. This 
may be caused by the reduced optical absorption at the 
longer wavelength [63, 64]. Figure 3c describes the tran-
sient current under periodic laser illumination of 10  s, 
indicating a stable reproducible photoresponse [61]. For 
most low dimensional photodetector dominated by pho-
togating effect, limited response speed and high respon-
sivity can be obtained due to the prolonged excess carrier 
lifetime [50, 65]. The rise/fall time is defined as the time 
required for the photocurrent to rise/fall from 10%/90% 
of the stable value to 90%/10% [66, 67]. The relatively long 

Fig. 2  Optoelectronic characteristics of the photodetector. (a) The schematic diagram and proposed band alignment of the photodetector. The 
optical image (b) and corresponding combined Raman mapping (c) of the photodetector. E1 and E2 represent the source and drain electrodes 
of the measured device. The semi-logarithmic (d) and linear (inset of (d)) I–V characteristics and the photoswitching characteristics (e) of the 
photodetector
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rise/fall time should be caused by slow carrier recombi-
nation, originated from laser illumination exciting many 
defective states [68]. Therefore, the response time includ-
ing rise time and fall time was sacrificed by photogating 
effect because of the long-lived charge trapping processes 
[57]. Some researchers have proposed that the high-qual-
ity channel material which can offer a smooth and short 
path for carrier transfer and optimal device structure can 
improve the response speed [69, 70]. Indeed, the figures 
of merit of the photosensitive devices are mainly respon-
sibility (R) and detectivity (D*). R is calculated by the 
relations of

where P and S are laser power density and effective 
device area, respectively [62, 71, 72]. Figure  3d shows 
the corresponding values of R of the photodetector 
under different laser power densities. The champion R 
reaches up to ~ 567.6  A/W delivering the competitive 

(1)R = Iph
/

(P · S)

performance parameter. The high R is attributed to the 
suppressed photocarrier recombination in the hetero-
structure together with electron trapping in the MoS2 
region presumably [22]. The decreased R as the laser 
power density increased reveals the photogating effect 
in the photodetector further [73].

Moreover, photocurrent and laser power density fol-
low the power-law equation:

where A is a constant and 0 < α < 1. The value of α, 
obtained by fitting the curve of Iph versus P in Fig. 4a, is 
related to the process of carrier capture, recombination 
and transfer [74, 75]. The sublinear relation between Iph 
and P suggests the presence of the photogating effect 
in the device further [65]. The higher value of α (such 
as ~ 0.73) can be obtained when the lower power den-
sities are applied due to reduced photocarrier recom-
bination and the interactions between carriers [75, 
76]. In contrast, higher power densities can result 
in a degraded α value of ~ 0.55 because of stronger 

(2)Iph = AP
α

Fig. 3  Photoresponse behavior of the photodetector. The I–V characteristics under different 405 nm laser power densities (a) and under different 
incident wavelengths of 5 mW/cm2 (b). (c) The time-resolved photoresponse excited by the periodic on/off switching of incident light. (d) The 
extracted R (black sphere) as a function of laser power densities. The applied voltage for (c–d) is 1 V



Page 6 of 9Li et al. Nanoscale Res Lett          (2021) 16:123 

recombination losses and more trap states [77]. The 
precondition of the calculated D* via the equation

is that the photodetectors are limited by shot noise as 
the main noise source [49, 66, 78]. In order to further 
evaluate D* more accurately, the noise current obtained 
in Fig.  4b is measured under different frequencies [74]. 
Figure 4b shows the typical 1/f noise [79] in our photo-
detectors, which is significant impediment to semicon-
ductor industry from new materials. This kind of noise is 

(3)D
∗
= R (S

/

2e Idark)
1/2

mainly resulted from the charged impurities and trapping 
sites in the conductive channel [57, 80]. A higher material 
quality and small structural defect density are desired for 
reducing the 1/f noise [81]. According to the formula of

where Δf and Inoise are measurement bandwidth and 
noise current [79], the detectivity of the photodetector 
is about 7.17 × 1011 Jones. Table  1 has compared some 
selected representative photodetectors with correspond-
ing photoresponse performance based on 2D materials. 

(4)D
∗
= R(S�f )1/2

/

Inoise

Fig. 4  (a) The plot of Iph versus laser power densities. (b) The current power spectrum (SI) under different frequencies. The applied voltage for (a–b) 
is 1 V

Table 1  Some photoresponse performance of selected representative photodetectors based on 2D materials

Materials Wavelength (nm) Responsivity (A/W) Detectivity (Jones) References

monolayer WSe2 650 3.5 × 105 1014 [82]

MoS2-on-Au 1310 0.68 1.89 × 1012 [83]

WSe2/SnS2 heterostructure 550 244 1.29 × 1013 [84]

MoS2/MoSe2 heterojunction 610 1.3 2.6 × 1011 [85]

WSe2/WS2 heterojunction 532 300 7 × 102 [86]

SnSe2/MoS2 heterostructure 500 9.1 × 103 9.3 × 1010 [87]

WSe2/BP/MoS2 532 6.32 1.25 × 1011 [88]

CdSxSe(1–x) 450 703 3.41 × 1010 [89]

SnS2xSe2(1–x) 633 6 × 103 8.2 × 1012 [90]

WS2/graphene nanosheets 480 1.15 2.06 × 109 [91]

SnS2 nanoflakes 400 354.4 2.0 × 1010 [92]

SnSe2 flakes 530 1.1 × 103 1.01 × 1010 [93]

Ca2Nb3O10 280 14.94 8.7 × 1013 [72]

Sr2Nb3O10 270 1214 1.4 × 1014 [71]

Graphene/WS2 heterostructure 400–700 106 3.8 × 1011 [94]

P-MoS2/N-MoS2 635 7 × 104 3.5 × 1014 [95]

MoS2/α-MoO3-x 405 1.9 × 105 9.8 × 1016 [96]

MoS2/WS2 heterojunction 405 567.6 7.17 × 1011 This work
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The relatively high R and D* of our photodetectors show 
great potential in optoelectronic devices.

Conclusions
In summary, a high-performance photodetector was 
developed based on the lateral monolayer MoS2/WS2 
heterojunction. The size of the channel materials grown 
by the one-step liquid-phase CVD method reaches up 
to millimeter scale. Moreover, the high-quality chan-
nel materials with good uniformity and sharp interface 
were examined by systematic material characterizations 
and subsequent device measurements. Particularly, 
high responsivity of 567.6 A/W and detectivity of ~ 1011 
Jones are achieved for the photodetectors attributing 
to the photogating effect. The performance of the pro-
posed lateral MoS2/WS2 heterojunction photodetec-
tors is better than or comparable to the reported work 
[24, 62, 76, 78, 86, 97, 98]. In addition, we suppose the 
undesired 1/f noise arising from the trapping/detrapping 
of charge carriers maybe further reduced by high-qual-
ity and defect-less channel material. The facile one-step 
liquid-phase CVD growth and excellent optoelectronic 
performance of the photodetectors can motivate further 
research regarding optoelectronic devices based on lat-
eral heterostructures.
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